
Vetting Applications

Jeff Voas & Angelos Stavrou
NIST

George Mason University

High-Level Project Overview

outpost

App
Developers

App
Store

Banks

•  Vetted apps ultimately go into an app
store.

•  Backflows of user feedback and in-field
test data.

•  If feedback is good, an app becomes
app store accepted, and money is
deposited; otherwise, a new version
from the developers needed.

Application Vetting: Big Picture

Progression of Testing

What about existing Analysis Tools?

•  Commercial application testing tools cover
regular, non-Android specific Bugs:
–  No Security Analysis of the Code Functionality
–  No Power Analysis of the Application

components and code
–  No Profiling of the resource consumption of

individual applications
–  Cannot Regulate/Deny the access and use of

phone subsystems (Camera, Microphone, GPS..)
•  Existing tools do not cover Program

Functionality
–  We reveal the application capabilities and access

6

Application Static Analysis does not cover
Program Functionality

Fortify, Coverity, and other application testing tools
cover regular, non-Android specific Bugs:

•  No Security Analysis of the Code Functionality"
•  No Power Analysis of the Application components

and code"
•  No Profiling of the resource consumption of

individual applications"
•  Cannot Regulate/Deny the access and use of

phone subsystems (Camera, Microphone, GPS..)!

Application Testing Framework

App Vetting & Control
•  App Signing – Prevent unauthorized App

Execution
–  Approved Apps are signed by the program

designated approval authority
–  Only program signed Apps can be installed on

the device
•  Customizations made to Android package framework

•  App Analysis & Testing
–  All Apps are analyzed for malware and potential

vulnerabilities
•  AV Scans
•  Vulnerability Scans (Fortify)

–  Expose hidden & unwanted functionality
•  Hidden in Native Libraries
•  Dynamic or obfuscated code

–  Permissions manifest reconciliation against code
8

Android Application Control
•  Application Signing – Prevent unauthorized

App Execution
–  Approved Apps are signed by the program

designated approval authority
–  Only program signed Apps can be installed on

the device
•  Customizations made to Android package

framework

•  Application Stress Testing
– Measure Power Consumption
–  Identify Input Errors / Find UI bugs

9

Application Analysis Framework
•  Android Specific Analysis includes analysis of

the Application Security Manifest
–  Tailored to the Android Permission Model

•  Verify if the requested permissions are
warranted by the submitted code
–  Remove excessive permissions & enforce a tighter

security model
•  Regulate access to critical/restricted resources

–  Modifications on the Android Engine to enable
dynamic policies

–  Control the underlying Dalvik engine to report
absence/depletion of resources instead of lack of
permissions

10

Application Policy Enforcement

Solution: Per Application Policy Enforcement

Provide Dalvik mechanisms to

•  Enforce application Access & Capabilities
•  Tailored to specific Location or Time
•  Tailored to specific Mission

•  Application can still be installed but deprived
access to resources and data selectively

Policy Enforcement paired with Device Security can
significantly reduce the risk of Data Exfiltraction

Power Metering Framework
•  Design & Implement an accurate model for

accounting and policing energy
consumption

•  Two-pronged approach
•  Meter the per-process CPU & Device utilization over time
•  Identify the relative impact of each device component on energy

consumption

•  Design an Android kernel subsystem to
estimate energy

•  Meter energy consumption for each App/process
•  Use for characterizing application behavior
•  This behavior is Application dependent
•  Sometimes the behavior is also User dependent

ATP Architecture

ATP analyzes Android code bundles and returns
messages, analysis reports, and signed APKs

ATP
Repository

Android
code

bundle

Developer Security Assessor

Application
Store

Application Testing Portal

App Manager Analyses Engine

Request Handler

Registration Handler

Submission Validator

UI Handler

API Handler

Pre-Processor

Tool Invoker

Post-Processor

APK Compiler/Signer

Result Handler

Android
Application

Analysis /Reports
& Signed APKs

Security assessor
examines submissions
that do not pass ATP
analysis.

14

Mobilize-ATP Workflow (PASS Use-Case)

NIST Testing
Portal (ATP) App Store

1. Submit Android code
bundle

2. Register submission

3. Tool 1 analysis

7. Tool n
analysis

…

4. Tool 1 status message &
analysis report

6. Tool 2 status message &
analysis report

8. Tool n status message
& analysis report

9. Assess results

11. PASS message & APK

ATP applies Testing to Analyze Android code bundles

10. Sign APK

PASS?

APKs are generated
and signed only if all
security analyses
pass.

AVs and Testing
Tools are invoked in
parallel on received
submissions

5. Tool 2 analysis

15

ATP Monitor

v Application Vetting & Testing

v Device Lock-down and Encryption of ALL Data
and Communications

v Enforcement of Security Policies in the Android
Framework

v Second-level Defenses placed in the Android
Linux Kernel
v Prevent Attacks that bypass Android Security Framework

v Android has Inherited some (if not all) of the Linux
Vulnerabilities

v Java Native Interface to Linux Libraries a potential
Avenue for Exploitation

Defense in-Depth:
Multiple Levels of Security

Conclusions
Assuring the Secure Operation of Smart Devices
has a wide-range of requirements!
 "
v  Application Testing"

v Static & Dynamic"
v In-Field Instrumentation"
v Power Behavior Metering & Policing !
"

v Physical Device Security"
v Lock-Down of the Device I/O (USB, WiFi, etc.)"
v Encryption of Data both on the Phone & Network"
v Securing Provisioning Process "

